首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Buffering the savanna: fire regimes and disequilibrium ecology in West Africa
Authors:P Laris  S Dadashi  A Jo  S Wechsler
Abstract:According to contemporary ecological theory, the mechanisms governing tree cover in savannas vary by precipitation level. In tropical areas with mesic rainfall levels, savannas are unstable systems in which disturbances, such as fire, determine the ratio of trees to grasses. Precipitation in these so-called “disturbance-driven savannas” is sufficient to support forest but frequent disturbances prevent transition to a closed canopy state. Building on a savanna buffering model we argue that a consistent fire regime is required to maintain savannas in mesic areas. We hypothesize that the spatiotemporal pattern of fires is highly regular and stable in these areas. Furthermore, because tree growth rates in savannas are a function of precipitation, we hypothesize that savannas with the highest rainfall levels will have the most consistent fire pattern and the most intense fires—thus the strongest buffering mechanisms. We analyzed the spatiotemporal pattern of burning over 11 years for a large subset of the West African savanna using a moderate resolution imaging spectroradiometer active fire product to document the fire regime for three savanna belts with different precipitation levels. We used LISA analysis to quantify the spatiotemporal patterns of fires, coefficient of variance to quantify differences in peak fire dates, and center or gravity pathways to characterize the spatiotemporal patterns of the fires for each area. Our analysis confirms that spatiotemporal regularity of the fire regime is greater for mesic areas that for areas where precipitation is lower and that areas with more precipitation have more regular fire regimes.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号