首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Interaction of cardiotoxin A5 with a membrane: role of conformational heterogeneity and hydrophilic properties
Authors:Konshina A G  Volynskiĭ P E  Arsen'ev A S  Efremov R G
Institution:Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, GSP Moscow, 117997 Russia. nastya@nmr.ru
Abstract:The hypothesis that local conformational differences of snake venom cardiotoxins (cytotoxins, CTs) may play a significant role in their interaction with membrane was tested by molecular modeling of the behavior of the CT A5 from the venom of Naja atra in water and at the water-membrane interface. Two models of the CT A5 spatial structure are known: the first was obtained by X-ray analysis and the second, by NMR studies in solution. A molecular dynamics (MD) analysis demonstrated that loop II of the toxin has a fixed omega-like shape in water, which does not depend on its initial structure. Interaction of the experimentally derived (X-ray and NMR) conformations and MD-simulated conformations of CT A5 with the lipid bilayer was studied by the Monte Carlo method using the previously developed model of the implicit membrane. The following was found: (1) Unlike the previously studied CT2 from the venom of cobra Naja oxiana, CT A5 has only loops I and II bound to the membrane, with the involvement of a lesser number of hydrophobic residues. (2) A long hydrophobic area is formed on the surface of CT A5 due to the omega-like shape of loop II and the arrangement of loop I in proximity to loop II. This hydrophobic area favors the toxin embedding into the lipid bilayer. (3) The toxin retains its conformation upon interaction with the membrane. (4). The CT A5 molecule has close values of the potential energy in the membrane and in an aqueous environment, which suggests a dynamic character of the binding. The results of the molecular modeling indicate a definite configuration of loops I and II and, consequently, a specific character of distribution of polar and apolar properties on the toxin surface, which turns out to be the most energetically favorable. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2003, vol. 29, no. 6; see also http://www.maik.ru.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号