首页 | 本学科首页   官方微博 | 高级检索  
     


Environmental Effects of Canopy Gap Formation in High-Rainfall Mangrove Forests1
Authors:Katherine C. Ewel,Songfa Zheng,Zuleika S. Pinz  n,John A. Bourgeois
Affiliation:Katherine C. Ewel,Songfa Zheng,Zuleika S. Pinzón,John A. Bourgeois
Abstract:This study investigated the importance of gap formation in mangrove swamps on the island of Kosrae, Federated States of Micronesia, in order to understand better both natural processes of forest development and the effects of harvesting trees for firewood in these wetlands. Measurements were concentrated in seven plots located near four rivers: three in fringe zones and four in basin zones. Each plot was a cluster of five points and covered an area of ca 1.3 ha. From every point in each of the seven plots, the nearest canopy gap ≥10 m2 was located; 25 of the 35 gaps were formed by harvesting. Porewater salinity was significantly higher under the canopy in fringe mangrove forests than in basin mangrove forests. Although gaps were small (mean gap size = 158 m2; median gap size = 92 m2), soil temperatures were significantly higher in gaps of both zones. Soil redox potential was significantly lower and porewater salinity significantly higher in the gaps than under the canopy in the basin zone only. Higher porewater salinity may be attributed to high evaporation rates from the soil and high transpiration rates from trees surrounding gaps. There were significantly more seedlings in gaps than under the canopy only in the fringe zones. Although gap formation alters the soil environment of Kosraean mangrove swamps, high freshwater input may buffer these effects in basin mangrove swamps by reducing porewater salinity. Current harvesting rates do not appear to be changing canopy species composition, but large gaps, especially in mangrove forests in more arid areas, may lead to major changes.
Keywords:Bruguiera gymnorrhiza  harvesting  Kosrae  Micronesia  Nypa fruticans  porewater salinity  Rhizophora  soil redox potential  Sonneratia alba
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号