首页 | 本学科首页   官方微博 | 高级检索  
     


Sugar Composition of Nectars and Fruits Consumed by Birds and Bats in the Tropics and Subtropics1
Authors:Herbert G. Baker  Irene Baker  Scott A. Hodges
Abstract:Several characteristics of flowers and fruits have been suggested as comprising syndromes of characters that indicate particular classes of pollinators and fruit dispersers. Common phylogenetic history among species, however, may also significantly influence these characters and obscure or enhance perceived patterns of plant syndromes. We analyzed the proportions of glucose, fructose, and sucrose by paper chromatography in the nectar and fruit juice of 525 tropical and subtropical plant species to test whether sugar chemistry was correlated with volant vertebrate pollinator or fruit disperser classes. Samples were taken from Old World and New World species and the calculations kept separate. Kruskal-Wallis tests of family means showed significant deviations in the percent sucrose content among pollinatorl disperser classes. Mann-Whitney U-tests showed significant differences among nectars of all pollinator classes but fruit juices differed only due to the high sucrose content of megachiropteran dispersed fruits. In addition, sign tests of samples occurring within families showed significant correlations between percentage sucrose content and pollinator/disperser classes. Passerine nectars had low sucrose content. In striking contrast, the nectar of hummingbird flowers had very high sucrose content. The Microchiroptera nectars showed hexose richness with a sucrose content somewhat greater than that of passerine flowers. Megachiroptera flowers showed sucrose-rich nectars. The results for fruits were comparable to those for nectars. Passerine fruits were hexose dominated, microchiropteran fruits had a sucrose content similar to passerine fruits, and megachiropteran fruits were sucrose-rich. We speculate on the evolutionary sequence of changes in nectar and fruit juice sugar composition and suggest that future investigations consider the chemistry of other food sources such as pollen and leaves. Only with these additions and other ecological studies can the full interplay of such plant-animal interactions be anticipated.
Keywords:coevolution  Erythrina  fruit juice  hummingbirds  Megachiroptera  Microchiroptera  nectar  passerine  sucrose
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号