首页 | 本学科首页   官方微博 | 高级检索  
   检索      


System-level network analysis of nitrogen starvation and recovery in <Emphasis Type="Italic">Chlamydomonas reinhardtii</Emphasis> reveals potential new targets for increased lipid accumulation
Authors:Email author" target="_blank">Luis?ValledorEmail author  Takeshi?Furuhashi  Luis?Recuenco-Mu?oz  Stefanie?Wienkoop  Email author" target="_blank">Wolfram?WeckwerthEmail author
Institution:1.Department of Ecogenomics and Systems Biology,Faculty of Life Sciences, University of Vienna,Vienna,Austria;2.Cyanoteam, Global Change Research Center-Czechglobe,Academy of Sciences of the Czech Republic,Brno,Czech Republic;3.Plant Physiology,University of Oviedo,Oviedo,Spain
Abstract:

Background

Nitrogen starvation is known to cause drastic alterations in physiology and metabolism leading to the accumulation of lipid bodies in many microalgae, and it thus presents an important alternative for biofuel production. However, despite the importance of this process, the molecular mechanisms that mediate the metabolic remodeling induced by N starvation and especially by stress recovery are still poorly understood, and new candidates for bioengineering are needed to make this process useful for biofuel production.

Results

We have studied the molecular changes involved in the adaptive mechanisms to N starvation and full recovery of the vegetative cells in the microalga Chlamydomonas reinhardtii during a four-day time course.High throughput mass spectrometry was employed to integrate the proteome and the metabolome with physiological changes. N starvation led to an accumulation of oil bodies and reduced Fv/Fm.. Distinct enzymes potentially participating in the carbon-concentrating mechanism (CAH7, CAH8, PEPC1) are strongly accumulated. The membrane composition is changed, as indicated by quantitative lipid profiles. A reprogramming of protein biosynthesis was observed by increased levels of cytosolic ribosomes, while chloroplastidic were dramatically reduced. Readdition of N led to, the identification of early responsive proteins mediating stress recovery, indicating their key role in regaining and sustaining normal vegetative growth.Analysis of the data with multivariate correlation analysis, Granger causality, and sparse partial least square (sPLS) provided a functional network perspective of the molecular processes. Cell growth and N metabolism were clearly linked by the branched chain amino acids, suggesting an important role in this stress. Lipid accumulation was also tightly correlated to the COP II protein, involved in vesicle and lysosome coating, and a major lipid droplet protein. This protein, together with other key proteins mediating signal transduction and adaption (BRI1, snRKs), constitute a series of new metabolic and regulatory targets.

Conclusions

This work not only provides new insights and corrects previous models by analyzing a complex dataset, but also increases our biochemical understanding of the adaptive mechanisms to N starvation in Chlamydomonas, pointing to new bioengineering targets for increased lipid accumulation, a key step for a sustainable and profitable microalgae-based biofuel production.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号