首页 | 本学科首页   官方微博 | 高级检索  
     


Stimulus (polyphenol, IFN-gamma, LPS)-dependent nitric oxide production and antileishmanial effects in RAW 264.7 macrophages
Authors:Kolodziej Herbert  Radtke Oliver A  Kiderlen Albrecht F
Affiliation:a Freie Universität Berlin, Institute of Pharmacy, Pharmaceutical Biology, Königin-Luise-Str. 2+4, D-14195 Berlin, Germany
b Robert Koch-Institut, Cellular Immunology Unit P22, Nordufer 20, D-13353 Berlin, Germany
Abstract:The effects of interferon (IFN-γ), lipopolysaccharide (LPS), and some polyphenols as individual stimuli, as well as in various combinations on NO production in non-infected and infected macrophage-like RAW 264.7 cells were investigated, with emphasis on the NO/parasite kill relationship. In non-infected and in Leishmania parasitized cells, gallic acid significantly inhibited the IFN-γ and LPS-induced NO detected in the supernatant. This effect was less prominent in IFN-γ- than in LPS-stimulated cells. Interestingly, and in contrast to non-infected cells, gallic acid inhibited NO production only when added within 3 h after IFN-γ + LPS. Addition of gallic acid following prolonged incubation with IFN-γ + LPS periods (24 h) no longer inhibited, sometimes even enhanced NO release. Notably, an excellent NO/parasite kill relationship was evident from all the experiments. This study was extended to a series of polyphenols (3-O-shikimic acid, its 3,5-digalloylated analogue, catechin, EGCG, and a procyanidin hexamer) with proven immunostimulatory activities. Although these compounds themselves were found to be weak NO-inducers, the viability of intracellular Leishmania parasites was considerably reduced. Furthermore, their dose-dependent effects on macrophage NO release was determined in the presence of IFN-γ and/or LPS. Again, non-infected and infected cells differed significantly in the NO response, while inhibition of IFN-γ and/or LPS-induced NO production by the tested polyphenols strongly depended on the given time of exposure and the sequence of immunological stimuli. A strong inverse correlation between NO levels and intracellular survival rates of Leishmania parasites supported the assumption that the observed inhibition of NO was not simply due to interference with the Griess assay used for detection.
Keywords:Leishmania   Polyphenols   Hydrolysable tannins   Proanthocyanidins   Macrophages   Antileishmanial activity   Immunomodulation   Nitric oxide
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号