首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Sinapis phylogeny and evolution of glucosinolates and specific nitrile degrading enzymes
Authors:Agerbirk Niels  Warwick Suzanne I  Hansen Paul R  Olsen Carl E
Institution:a Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
b Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, K.W. Neatby Bldg., Central Experimental Farm, Ottawa, ON, K1A 0C6 Canada
Abstract:Levels of sinalbin (4-hydroxybenzylglucosinolate) and 28 other glucosinolates were determined in leaves and roots of 20 species that were either phylogenetically close to Sinapis alba, Sinapis arvensis, or Sinapis pubescens (tribe Brassiceae, Brassicaceae), or were expected to contain arylalkyl nitrilase activity. Comparison with a molecular phylogenetic tree based on ITS DNA sequences identified two separate occurrences of sinalbin. The first in a group of species related to S. alba (including members of the genera Coincya and Kremeriella); and the second in S. arvensis, nested among sinalbin deficient species. Significant 4-hydroxyphenylacetonitrile degrading enzyme activity was found in both S. alba and S. arvensis, but in S. alba the major product was the corresponding carboxylic acid, while in S. arvensis the major product was the amide. Both investigated enzyme activities, nitrilase and nitrile hydratase, were specific, accepting only certain arylacetonitriles such as 4-hydroxy and 4-methoxyphenylacetonitrile. Only the S. alba enzyme required an oxygen in para position of the substrate, as found in sinalbin. Indole-3-acetonitrile, arylcyanides, and arylpropionitriles were poor substrates. The nitrilase activity of S. alba was quantitatively comparable to that reported in the monocot Sorghum bicolor (believed to be involved in cyanogenic glycoside metabolism). Glucosinolates derived from methionine were found in all Sinapis clades. Glucosinolate patterns suggested a complex evolution of glucosinolates in the investigated species, with several apparent examples of abrupt changes in glucosinolate profiles including chain length variation and appearance of glucosinolates derived from branched-chain amino acids. NMR data for desulfated homosinalbin, 9-methylsulphonylnonylglucosinolate, 3-methylpentylglucosinolate and related glucosinolates are reported, and a facultative connection between sinalbin and specific nitrilases is suggested.
Keywords:Brassica  Branched-chain glucosinolate  Coincya  Evolution  Glucosinolate  Homosinalbin  Kremeriella  Metabolism  Nitrilase  Nitrile hydratase  Nitrile specifier protein  Sinalbin  Sinapis  Sorghum
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号