首页 | 本学科首页   官方微博 | 高级检索  
     


Responses of Plant Dark Respiration to Doubled CO2 Concentration
Authors:Wang Xing-fen  Bai Ke-zhi  Kuang Ting-yun
Abstract:Ten species of plants were grown at ambient (350μmol CO2·mol-1 air) and doubled (700 μmol CO2·mol-1 air) CO2 concentrations at ambient temperature and illumination in order to examine changes of dark respiration of whole seedlings or detached leaves. Effects of CO2 on dark respiration were determined by brief exposure ( ≤ 5 min) to corresponding CO2 concentration and temperatures ( 15,20,25,30 and 35 ℃ ) with infrared CO2 analyzer. The reductions in dark respiration on a weight base for leaves of East-Liaoning oak (Quercus liaotungensis Koidz. ) at 15,20 and 25 ℃ and of soybean ( Glycine max L. ) at 20,25,30 and 35 ℃ and for whole seedlings of three- tcoloured amaranth (Amaranthus tricolor L. ) at 15 and 20 ℃ and cucumber ( Cucumis sativus L. ) at 15 cE measured at elevated concentration relative to the ambient CO2 concentration were observed. No significant difference in respiration responded was observed to elevated or ambient CO2 concentrations at 15 ℃ in maize (Zea mays L. ) seedlings and alfalfa (Medicago sativa L. ) leaves, at 35 ℃ in East-Liaoning oak leaves and at 20,25 and 30 ℃ in three-coloured amaranth seedlings. However CO2 efflux in leaves of weeping willow (Salix babylonica L. ), simon poplar (Populus simonii Carr. ) and eucommia (Eucommia ulmoides Oliv. ) at 15,20,25,30 and 35 ℃, alfalfa at 20,25,30 and 35 ℃, East-Liaoning oak at 30 ℃, maize at 15 ℃, seedlings of common buckwheat (Fagotrytum esculentum Moench) at 15,20,25,30 and 35 ℃, cucumber and maize at 20,25,30 and 35 ℃ and three-coloured amaranth at 35 ℃ showed an increase at elevated in contrast to ambient CO2 concentration. In general, at lower temperatures (i. e. 15, 20 ℃ ) there was no significant difference between elevated and ambient CO2 concentration for dark respiration, while at higher temperatures (i. e. 30,35 ℃ ) elevated CO2 concentration positively stimulate clark respiretion. It has not yet been described that double CO2 concentration could enhance plant dark respiration at 30 and 35 ℃. Impacts of the characteristics in dark respiration on the future changes of vegetation and its mechanism were discussed.
Keywords:Doubled CO2 concentration   Temperature   Plant dark respiration  
点击此处可从《植物学报(英文版)》浏览原始摘要信息
点击此处可从《植物学报(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号