首页 | 本学科首页   官方微博 | 高级检索  
     


p38α- and DYRK1A-dependent phosphorylation of caspase-9 at an inhibitory site in response to hyperosmotic stress
Authors:Anne Seifert  Paul R. Clarke  
Affiliation:aBiomedical Research Institute, School of Medicine, College of Medicine, Dentistry and Nursing, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, Scotland, UK
Abstract:The cysteine aspartyl protease caspase-9 is a critical component of the intrinsic apoptotic pathway. Activation of caspase-9 is inhibited by phosphorylation at Thr125, which is catalysed by the mitogen-activated protein kinases (MAPKs) ERK1/2 in response to growth factors, by the cyclin-dependent protein kinase CDK1-cyclin B1 during mitosis, and at a basal level by the dual-specificity tyrosine-phosphorylation regulated protein kinase DYRK1A. Here we show that inhibitory phosphorylation of caspase-9 at Thr125 is induced in mammalian cells by hyperosmotic stress. This response does not require ERK1/2 or ERK5, but it is diminished by ablation of DYRK1A expression by siRNA or chemical inhibition of DYRK1A by harmine. Phosphorylation of Thr125 in response to hyperosmotic stress is also reduced by chemical inhibition of p38 MAPK and is abolished in p38α−/− mouse embryonic fibroblasts. These results show that both DYRK1A and p38α play roles in the inhibitory phosphorylation of caspase-9 following hyperosmotic stress and suggest a functional interaction between these protein kinases. Phosphorylation of caspase-9 at Thr125 may restrain apoptosis during the acute response to hyperosmotic stress.
Keywords:Osmotic stress   Protein kinase   Caspase   Apoptosis   p38   DYRK
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号