首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Tetramer protein complex interface residue pairs prediction with LSTM combined with graph representations
Institution:1. Department of Genome Oriented Bioinformatics, Technische Universität München, 85354 Freising, Germany;2. Helmholtz Zentrum Munich, German Research Center for Environmental Health (GmbH), Institute of Bioinformatics and Systems Biology, 85764, Neuherberg, Germany;3. St Petersburg State Polytechnical University, St Petersburg 195251, Russia
Abstract:MotivationProtein-protein interactions are important for many biological processes. Theoretical understanding of the structurally determining factors of interaction sites will help to understand the underlying mechanism of protein-protein interactions. Taking advantage of advanced mathematical methods to correctly predict interaction sites will be useful. Although some previous studies have been devoted to the interaction interface of protein monomer and the interface residues between chains of protein dimers, very few studies about the interface residues prediction of protein multimers, including trimers, tetramer and even more monomers in a large protein complex. As we all know, a large number of proteins function with the form of multibody protein complexes. And the complexity of the protein multimers structure causes the difficulty of interface residues prediction on them. So, we hope to build a method for the prediction of protein tetramer interface residue pairs.ResultsHere, we developed a new deep network based on LSTM network combining with graph to predict protein tetramers interaction interface residue pairs. On account of the protein structure data is not the same as the image or video data which is well-arranged matrices, namely the Euclidean Structure mentioned in many researches. Because the Non-Euclidean Structure data can't keep the translation invariance, and we hope to extract some spatial features from this kind of data applying on deep learning, an algorithm combining with graph was developed to predict the interface residue pairs of protein interactions based on a topological graph building a relationship between vertexes and edges in graph theory combining multilayer Long Short-Term Memory network. First, selecting the training and test samples from the Protein Data Bank, and then extracting the physicochemical property features and the geometric features of surface residue associated with interfacial properties. Subsequently, we transform the protein multimers data to topological graphs and predict protein interaction interface residue pairs using the model. In addition, different types of evaluation indicators verified its validity.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号