首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effect of aboveground intervention on fine root mass, production, and turnover rate in a Chinese cork oak (Quercus variabilis Blume) forest
Authors:Chuang Ma  Wenhui Zhang  Min Wu  Yaoqin Xue  Liwei Ma  Jianyun Zhou
Institution:1. Key Laboratory of Environment and Ecology of Education Ministry in West China, Northwest A&F University, Shaanxi, 712100, China
2. College of life sciences, Northwest A&F University, Shaanxi, 712100, China
Abstract:

Aims

Fine root is an important part of the forest carbon cycle. The growth of fine roots is usually affected by forest intervention. This study aims to investigate the fine root mass, production, and turnover in the disturbed forest.

Methods

The seasonal and vertical distributions of fine root (diameter ≤2 mm) were measured in a Chinese cork oak (Quercus variabilis Blume) forest. The biomass and necromass of roots with diameters ≤1 mm and 1-2 mm in 0-40 cm soil profiles were sampled by using a sequential soil coring method in the stands after clear cutting for 3 years, with the stands of the remaining intact trees as the control.

Results

The fine root biomass (FRB) and fine root necromass (FRN) varied during the growing season and reached their peak in August. Lower FRB and higher FRN were found in the clear cutting stands. The ratio between FRN and FRB increased after forest clear cutting compared with the control and was the highest in June. The root mass with diameter ≤1 mm was affected proportionately more than that of diameter 1-2 mm root. Clear cutting reduced FRB and increased FRN of roots both ≤1 mm and 1-2 mm in diameter along the soil depths. Compared with the control, the annual fine root production and the average turnover rate decreased by 30.7 % and 20.7 %, respectively, after clear cutting for 3 years. The decline of canopy cover contributed to the dramatic fluctuation of soil temperature and moisture from April to October. With redundancy discriminate analysis (RDA) analysis, the first axis was explained by soil temperature (positive) and moisture (negative) in the control stands. Aboveground stand structure, including canopy cover, sprout height, and basal area, influenced FRB and FRN primarily after forest clear cutting.

Conclusions

This study suggested that the reduction of fine root biomass, production, and turnover rate can be attributed to the complex changes that occur after forest intervention, including canopy damage, increased soil temperature, and degressive soil moisture.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号