首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Elevated CO2 temporally enhances phosphorus immobilization in the rhizosphere of wheat and chickpea
Authors:Jian Jin  Caixian Tang  Roger Armstrong  Clayton Butterly  Peter Sale
Institution:1. Department of Agricultural Sciences, La Trobe University, Melbourne Campus, Bundoora, VIC, 3086, Australia
3. Key Laboratory of Black Soil Ecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
2. Department of Primary Industries, PMB 260, Horsham, VIC, 3401, Australia
Abstract:

Aims

The efficient management of phosphorus (P) in cropping systems remains a challenge due to climate change. We tested how plant species access P pools in soils of varying P status (Olsen-P 3.2–17.6 mg?kg?1), under elevated atmosphere CO2 (eCO2).

Methods

Chickpea (Cicer arietinum L.) and wheat (Triticum aestivum L.) plants were grown in rhizo-boxes containing Vertosol or Calcarosol soil, with two contrasting P fertilizer histories for each soil, and exposed to ambient (380 ppm) or eCO2 (700 ppm) for 6 weeks.

Results

The NaHCO3-extractable inorganic P (Pi) in the rhizosphere was depleted by both wheat and chickpea in all soils, but was not significantly affected by CO2 treatment. However, NaHCO3-extractable organic P (Po) accumulated, especially under eCO2 in soils with high P status. The NaOH-extractable Po under eCO2 accumulated only in the Vertosol with high P status. Crop species did not exhibit different eCO2-triggered capabilities to access any P pool in either soil, though wheat depleted NaHCO3-Pi and NaOH-Pi in the rhizosphere more than chickpea. Elevated CO2 increased microbial biomass C in the rhizosphere by an average of 21 %. Moreover, the size in Po fractions correlated with microbial C but not with rhizosphere pH or phosphatase activity.

Conclusion

Elevated CO2 increased microbial biomass in the rhizosphere which in turn temporally immobilized P. This P immobilization was greater in soils with high than low P availability.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号