首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of extracellular calcium and protons on osteoclast potassium currents
Authors:S A Arkett  S J Dixon  S M Sims
Institution:(1) Department of Physiology, The University of Western Ontario, N6A 5C1 London, Ontario, Canada;(2) Division of Oral Biology, Faculty of Dentistry, The University of Western Ontario, N6A 5C1 London, Ontario, Canada
Abstract:During resorption of mineralized tissues, osteoclasts are exposed to marked changes in the concentration of extracellular Ca2+ and H+. We examined the effects of these cations on two types of K+ currents previously described in these cells. Whole-cell patch clamp recordings of membrane currents were made from osteoclasts freshly isolated from neonatal rats. In control saline (1 mm Ca2+, pH 7.4), the voltage-gated, outwardly rectifying K+ current activates at approximately 45 mV and the conductance is half-maximally activated at –29 mV (V 0.5). Increasing Ca2+]out rapidly and reversibly shifted the current-voltage (I–V) relation to more positive potentials. Current at –29 mV decreased to 28 and 9% of control current at 5 and 10 mm Ca2+]out, respectively. This effect of elevating Ca2+]out was due to a positive shift of the K+ channel voltage activation range. Zn2+ or Ni2+ (5 to 500 mgrm) also shifted the I–V relation to more positive potentials and had additional effects consistent with blockade of the K+ channel. Based on the extent to which these divalent cations affected the voltage activation range of the outwardly rectifying K+ current, the potency sequence was Zn2+ > Ni2+ > Ca2+. Lowering or raising extracellular pH also caused shifts of the voltage activation range to more positive or negative potentials, respectively. In contrast to their effects on the outwardly rectifying K+ current, changes in the concentration of extracellular H+ or Ca2+ did not shift the voltage activation range of the inwardly rectifying K+ current. These findings are consistent with Ca2+ and other cations affecting voltage-dependent gating of the osteoclast outwardly rectifying K+ channel through changes in surface charge.This work was supported by The Arthritis Society and the Medical Research Council of Canada. S.M.S. is supported by a Scientist Award and S.J.D. by a Development Grant from the Medical Research Council.
Keywords:Kv1  3  Inwardly rectifying K+ channel  Surface charge  Zn2+  pH
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号