首页 | 本学科首页   官方微博 | 高级检索  
     


Characterization of phosphatidylinositol-specific phospholipase C (PI-PLC) from Lilium daviddi pollen
Authors:Pan Yan-Yun  Wang Xin  Ma Li-Geng  Sun Da-Ye
Affiliation:Institute of Molecular Cell Biology, Hebei Normal University, Shijiazhuang, Hebei, PR China.
Abstract:The phosphatidylinositol-specific phospholipase C (PI-PLC) activity is detected in purified Lilium pollen protoplasts. Two PI-PLC full length cDNAs, LdPLC1 and LdPLC2, were isolated from pollen of Lilium daviddi. The amino acid sequences for the two PI-PLCs deduced from the two cDNA sequences contain X, Y catalytic motifs and C2 domains. Blast analysis shows that LdPLCs have 60-65% identities to the PI-PLCs from other plant species. Both recombinant PI-PLCs proteins expressed in E. coli cells show the PIP(2)-hydrolyzing activity. The RT-PCR analysis shows that both of them are expressed in pollen grains, whereas expression level of LdPLC2 is induced in germinating pollen. The exogenous purified calmodulin (CaM) is able to stimulate the activity of the PI-PLC when it is added into the pollen protoplast medium, while anti-CaM antibody suppresses the stimulation effect caused by exogenous CaM. PI-PLC activity is enhanced by G protein agonist cholera toxin and decreased by G protein antagonist pertussis toxin. Increasing in PI-PLC activity caused by exogenous purified CaM is also inhibited by pertussis toxin. A PI-PLC inhibitor, U-73122, inhibited the stimulation of PI-PLC activity caused by cholera toxin and it also leads to the decrease of [Ca(2+)](cyt) in pollen grains. Those results suggest that the PPI-PLC signaling pathway is present in Lilium daviddi pollen, and PI-PLC activity might be regulated by a heterotrimeric G protein and extracellular CaM.
Keywords:
本文献已被 PubMed Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号