首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Multiple advantageous amino acid variants in the NAT2 gene in human populations
Authors:Luca Francesca  Bubba Giuseppina  Basile Massimo  Brdicka Radim  Michalodimitrakis Emmanuel  Rickards Olga  Vershubsky Galina  Quintana-Murci Lluis  Kozlov Andrey I  Novelletto Andrea
Institution:Department of Cell Biology, University of Calabria, Rende, Italy.
Abstract:

Background

Genetic variation at NAT2 has been long recognized as the cause of differential ability to metabolize a wide variety of drugs of therapeutic use. Here, we explore the pattern of genetic variation in 12 human populations that significantly extend the geographic range and resolution of previous surveys, to test the hypothesis that different dietary regimens and lifestyles may explain inter-population differences in NAT2 variation.

Methodology/Principal Findings

The entire coding region was resequenced in 98 subjects and six polymorphic positions were genotyped in 150 additional subjects. A single previously undescribed variant was found (34T>C; 12Y>H). Several aspects of the data do not fit the expectations of a neutral model, as assessed by coalescent simulations. Tajima''s D is positive in all populations, indicating an excess of intermediate alleles. The level of between-population differentiation is low, and is mainly accounted for by the proportion of fast vs. slow acetylators. However, haplotype frequencies significantly differ across groups of populations with different subsistence.

Conclusions/Significance

Data on the structure of haplotypes and their frequencies are compatible with a model in which slow-causing variants were present in widely dispersed populations before major shifts to pastoralism and/or agriculture. In this model, slow-causing mutations gained a selective advantage in populations shifting from hunting-gathering to pastoralism/agriculture. We suggest the diminished dietary availability of folates resulting from the nutritional shift, as the possible cause of the fitness increase associated to haplotypes carrying mutations that reduce enzymatic activity.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号