首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Targeted disruption of the beta2 adrenergic receptor gene.
Authors:A J Chruscinski  D K Rohrer  E Schauble  K H Desai  D Bernstein  B K Kobilka
Institution:Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, USA.
Abstract:beta-Adrenergic receptors (beta-ARs) are members of the superfamily of G-protein-coupled receptors that mediate the effects of catecholamines in the sympathetic nervous system. Three distinct beta-AR subtypes have been identified (beta1-AR, beta2-AR, and beta3-AR). In order to define further the role of the different beta-AR subtypes, we have used gene targeting to inactivate selectively the beta2-AR gene in mice. Based on intercrosses of heterozygous knockout (beta2-AR +/-) mice, there is no prenatal lethality associated with this mutation. Adult knockout mice (beta2-AR -/-) appear grossly normal and are fertile. Their resting heart rate and blood pressure are normal, and they have a normal chronotropic response to the beta-AR agonist isoproterenol. The hypotensive response to isoproterenol, however, is significantly blunted compared with wild type mice. Despite this defect in vasodilation, beta2-AR -/- mice can still exercise normally and actually have a greater total exercise capacity than wild type mice. At comparable workloads, beta2-AR -/- mice had a lower respiratory exchange ratio than wild type mice suggesting a difference in energy metabolism. beta2-AR -/- mice become hypertensive during exercise and exhibit a greater hypertensive response to epinephrine compared with wild type mice. In summary, the primary physiologic consequences of the beta2-AR gene disruption are observed only during the stress of exercise and are the result of alterations in both vascular tone and energy metabolism.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号