首页 | 本学科首页   官方微博 | 高级检索  
     


Anisotropic nutrient transport in three-dimensional single species bacterial biofilms
Authors:Van Wey A S  Cookson A L  Soboleva T K  Roy N C  McNabb W C  Bridier A  Briandet R  Shorten P R
Affiliation:AgResearch, Ruakura Research Centre, Hamilton, New Zealand.
Abstract:The ability for a biofilm to grow and function is critically dependent on the nutrient availability, and this in turn is dependent on the structure of the biofilm. This relationship is therefore an important factor influencing biofilm maturation. Nutrient transport in bacterial biofilms is complex; however, mathematical models that describe the transport of particles within biofilms have made three simplifying assumptions: the effective diffusion coefficient (EDC) is constant, the EDC is that of water, and/or the EDC is isotropic. Using a Monte Carlo simulation, we determined the EDC, both parallel to and perpendicular to the substratum, within 131 real, single species, three-dimensional biofilms that were constructed from confocal laser scanning microscopy images. Our study showed that diffusion within bacterial biofilms was anisotropic and depth dependent. The heterogeneous distribution of bacteria varied between and within species, reducing the rate of diffusion of particles via steric hindrance. In biofilms with low porosity, the EDCs for nutrient transport perpendicular to the substratum were significantly lower than the EDCs for nutrient transport parallel to the substratum. Here, we propose a reaction-diffusion model to describe the nutrient concentration within a bacterial biofilm that accounts for the depth dependence of the EDC.
Keywords:diffusion  fermentation  metabolism  model  monod kinetics
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号