首页 | 本学科首页   官方微博 | 高级检索  
     


Ionization state and molecular docking studies for the macrophage migration inhibitory factor: the role of lysine 32 in the catalytic mechanism
Authors:Soares T  Goodsell D  Ferreira R  Olson A J  Briggs J M
Affiliation:Department of Biology and Biochemistry, University of Houston, TX 77204-5513, USA.
Abstract:The macrophage migration inhibitory factor (MIF) is a cytokine that is structurally similar to certain isomerases and for which multiple immune and catalytic roles have been proposed. Different catalytic activities have been reported for MIF, yet the exact mechanism by which MIF acts is not completely known. As a tautomerase, the enzyme uses a general acid-base mechanism of proton transfer in which the amino-terminal proline has been shown to function as the catalytic base. We report the results of molecular docking simulations of macrophage migration inhibitory factor with three substrates, D-dopachrome, L-dopachrome methyl ester and p-(hydroxyphenyl)pyruvate. Electrostatic pK(a) predictions were also performed for the free and complexed forms of the enzyme. The predicted binding mode of p-(hydroxyphenyl)pyruvate is in agreement with the recently published X-ray structure. A model for the binding mode of D-dopachrome and L-dopachrome methyl ester to MIF is proposed which offers insights into the catalytic mechanism of D-dopachrome tautomerase activity of MIF. The proposed catalytic mechanism is further supported by the pK(a) predictions, which suggest that residue Lys32 acts as the general acid for the enzymatic catalysis of D-dopachrome.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号