首页 | 本学科首页   官方微博 | 高级检索  
     


Regulation of DARPP-32 dephosphorylation at PKA- and Cdk5-sites by NMDA and AMPA receptors: distinct roles of calcineurin and protein phosphatase-2A
Authors:Nishi Akinori  Bibb James A  Matsuyama Seiichiro  Hamada Miho  Higashi Hideho  Nairn Angus C  Greengard Paul
Affiliation:Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan. nishia@med.kurume-u.ac.jp
Abstract:Glutamatergic inputs from corticostriatal and thalamostriatal pathways have been shown to modulate dopaminergic signaling in neostriatal neurons. DARPP-32 (dopamine- and cAMP-regulated phosphoprotein of M (r) 32 kDa) is a signal transduction molecule that regulates the efficacy of dopamine signaling in neostriatal neurons. Dopamine signaling is mediated in part through phosphorylation of DARPP-32 at Thr34 by cAMP-dependent protein kinase, and antagonized by phosphorylation of DARPP-32 at Thr75 by cyclin-dependent protein kinase 5. We have now investigated the effects of the ionotropic glutamate NMDA and AMPA receptors on DARPP-32 phosphorylation in neostriatal slices. Activation of NMDA and AMPA receptors decreased the state of phosphorylation of DARPP-32 at Thr34 and Thr75. The decrease in Thr34 phosphorylation was mediated through Ca(2+) -dependent activation of the Ca(2+) -/calmodulin-dependent phosphatase, calcineurin. In contrast, the decrease in Thr75 phosphorylation was mediated through Ca(2+) -dependent activation of dephosphorylation by protein phosphatase-2A. The results provide support for a complex effect of glutamate on dopaminergic signaling through the regulation of dephosphorylation of different sites of DARPP-32 by different protein phosphatases.
Keywords:dopamine    glutamate    intracellular Ca2+    neostriatal neurons    phosphorylation
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号