首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Role of intramolecular disulfides in stability and structure of a noncovalent homodimer
Authors:Rajagopalan Lavanya  Chin Christopher C  Rajarathnam Krishna
Institution:Department of Biochemistry & Molecular Biology, and Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA.
Abstract:The importance of intramolecular disulfides in a noncovalent dimeric protein interleukin-8 (IL-8) has been studied by replacing cysteines in each of the two disulfide pairs with alpha-aminobutyric acid (CH(2)-SH --> CH(2)-CH(3)). Both disulfide mutants are less stable and exist as molten globules in the monomeric state. Interestingly, both mutants dimerize, though with slightly lower affinities compared to the native protein. NMR studies suggest a molten globule-like structure also in the dimeric state. Structures, sequence analysis, and mutagenesis studies have shown that the conserved hydrophobic residues are packed against each other in the protein core and that H bonding and van der Waals interactions stabilize the dimer interface. Deleting either disulfide in IL-8 results in substantial loss in receptor activity, indicating that both disulfides are critical for function in the folded protein. These data together suggest that the packing interactions of the hydrophobic core determine IL-8 monomer fold, that disulfides play only a marginal role in dimer formation, and that the stability imparted by the disulfides is intimately coupled to fold and function.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号