首页 | 本学科首页   官方微博 | 高级检索  
     


Aerobic MTBE biodegradation in the presence of BTEX by two consortia under batch and semi-batch conditions
Authors:M. Raynal  A. Pruden
Affiliation:(1) Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO 80523, USA
Abstract:This study explores the effect of microbial consortium composition and reactor configuration on methyl tert-butyl ether (MTBE) biodegradation in the presence of benzene, toluene, ethylbenzene and p-xylenes(BTEX). MTBE biodegradation was monitored in the presence and absence of BTEX in duplicate batch reactors inoculated with distinct enrichment cultures: MTBE only (MO—originally enriched on MTBE) and/or MTBE BTEX (MB—originally enriched on MTBE and BTEX). The MO culture was also applied in a semi-batch reactor which received both MTBE and BTEX periodically in fresh medium after allowing cells to settle. The composition of the microbial consortia was explored using a combination of 16S rRNA gene cloning and quantitative polymerase chain reaction targeting the known MTBE-degrading strain PM1T. MTBE biodegradation was completely inhibited by BTEX in the batch reactors inoculated with the MB culture, and severely retarded in those inoculated with the MO culture (0.18 ± 0.04 mg/L-day). In the semi-batch reactor, however, the MTBE biodegradation rate in the presence of BTEX was almost three times as high as in the batch reactors (0.48 ± 0.2 mg/L-day), but still slower than MTBE biodegradation in the absence of BTEX in the MO-inoculated batch reactors (1.47 ± 0.47 mg/L-day). A long lag phase in MTBE biodegradation was observed in batch reactors inoculated with the MB culture (20 days), but the ultimate rate was comparable to the MO culture (0.95 ± 0.44 mg/L-day). Analysis of the cultures revealed that strain PM1T concentrations were lower in cultures that successfully biodegraded MTBE in the presence of BTEX. Also, other MTBE degraders, such as Leptothrix sp. and Hydrogenophaga sp. were found in these cultures. These results demonstrate that MTBE bioremediation in the presence of BTEX is feasible, and that culture composition and reactor configuration are key factors.
Keywords:BTEX   Hydrogenophaga   MTBE  PM1  Q-PCR  RFLP
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号