首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mutagenesis study of the 2Fe-2S center and the FAD binding site of the Na(+)-translocating NADH:ubiquinone oxidoreductase from Vibrio cholerae
Authors:Barquera Blanca  Nilges Mark J  Morgan Joel E  Ramirez-Silva Leticia  Zhou Weidong  Gennis Robert B
Institution:Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA. barqub@rpi.edu
Abstract:Many marine and pathogenic bacteria have a unique sodium-translocating NADH:ubiquinone oxidoreductase (Na(+)-NQR), which generates an electrochemical Na(+) gradient during aerobic respiration. Na(+)-NQR consists of six subunits (NqrA-F) and contains five known redox cofactors: two covalently bound FMNs, one noncovalently bound FAD, one riboflavin, and one 2Fe-2S center. A stable neutral flavin-semiquinone radical is observed in the air-oxidized enzyme, while the NADH- or dithionite-reduced enzyme exhibits a stable anionic flavin-semiquinone radical. The NqrF subunit has been implicated in binding of both the 2Fe-2S cluster and the FAD. Four conserved cysteines (C70, C76, C79, and C111) in NqrF match the canonical 2Fe-2S motif, and three conserved residues (R210, Y212, S246) have been predicted to be part of a flavin binding domain. In this work, these two motifs have been altered by site-directed mutagenesis of individual residues and are confirmed to be essential for binding, respectively, the 2Fe-2S cluster and FAD. EPR spectra of the FAD-deficient mutants in the oxidized and reduced forms exhibit neutral and anionic flavo-semiquinone radical signals, respectively, demonstrating that the FAD in NqrF is not the source of either radical signal. In both the FAD and 2Fe-2S center mutants the line widths of the neutral and anionic flavo-semiquinone EPR signals are unchanged from the wild-type enzyme, indicating that neither of these centers is nearby or coupled to the radicals. Measurements of steady-state turnover using NADH, Q-1, and the artificial electron acceptor ferricyanide strongly support an electron transport pathway model in which the noncovalently bound FAD in the NqrF subunit is the initial electron acceptor and electrons then flow to the 2Fe-2S center.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号