首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Down‐regulation of striatin,a neuronal calmodulin‐binding protein,impairs rat locomotor activity
Authors:Marc Bartoli  Jean‐Pierre Ternaux  Claude Forni  Paule Portalier  Pascal Salin  Marianne Amalric  Ariane Monneron
Abstract:Striatin, an intraneuronal, calmodulin‐binding protein addressed to dendrites and spines, is expressed in the motor system, particularly the striatum and motoneurons. Striatin contains a high number of domains mediating protein–protein interactions, suggesting a role within a dendritic Ca2+‐signaling pathway. Here, we explored the hypothesis of a direct role of striatin in the motor control of behaving rats, by using an antisense strategy based on oligodeoxynucleotides (ODN). Rats were treated by intracerebroventricular infusion of a striatin antisense ODN (A‐ODN) or mismatch ODN (M‐ODN) delivered by osmotic pumps over 6 days. A significant decrease in the nocturnal locomotor activity of A‐ODN–treated rats was observed after 5 days of treatment. Hypomotricity was correlated with a 60% decrease in striatin content of the striata of A‐ODN–treated rats sacrificed on day 6. Striatin thus plays a role in the control of motor function. To approach the cellular mechanisms in which striatin is involved, striatin down‐regulation was studied in a comparatively simpler model: purified rat spinal motoneurons which retain their polarity in culture. Treatment of cells by the striatin A‐ODN resulted in the impairement of the growth of dendrites but not axon. The decrease in dendritic growth paralleled the loss of striatin. This model allows analysis of the molecular basis of striatin function in the dynamic changes occurring in growing dendrites, and offers clues to unravel its function within spines. © 1999 John Wiley & Sons, Inc. J Neurobiol 40: 234–243, 1999
Keywords:oligonucleotide antisense strategy  striatin  motor control  neurite growth  cultured motoneurons
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号