首页 | 本学科首页   官方微博 | 高级检索  
     


Efficacy and specificity of antisense laminin chain-specific expression vectors in blocking laminin induction by TGFβ1: Effect of laminin blockade on TGFβ1-mediated cellular responses
Authors:Sriram Rajagopal  Thomas L. Moskal  Hongmei Wang  Subhas Chakrabarty
Abstract:Transforming growth factorβ1 (TGFβ1) elicits a multitude of cellular responses from the epithelial-derived human colon cancer Moser cells. TGFβ1 induces the expression of laminin and fibronectin, and previous studies show that the induction of fibronectin is functionally associated with the regulation of carcinoembryonic antigen (CEA) expression by TGFβ1 (Huang and Chakrabarty, 1994, J Biol Chem 269:28764–28768). In this study we constructed antisense laminin chain-specific expression vectors and determined their efficacy in blocking the expression and the induction of the large multichain laminin molecule by TGFβ1. We also determined the functional role of laminin in several TGFβ1-mediated responses: growth inhibition, downmodulation of anchorage-independent growth, and cellular invasion. Expression of either antisense laminin chain A, B1, or B2 RNA resulted in a downmodulation of endogenous laminin mRNA expression and blocked the induction of laminin protein by TGFβ1 without affecting the induction of other adhesion molecules such as fibronectin or CEA. It is concluded that antisense RNA directed to only one of the laminin chains was sufficient to disrupt the induction of the complex laminin molecule in quite a specific manner. Expression of antisense laminin RNA downregulated cellular adhesion to extracellular matrix (ECM) laminin and blocked the ability of TGFβ1 to upmodulate adhesion to ECM laminin. Expression of antisense laminin RNA, however, did not alter the downregulating effect of TGFβ1 on cellular proliferation, anchorage-independent growth, or cellular invasion, suggesting that the induction of laminin did not play a significant functional role in these TGFβ1-mediated cellular responses. It is likely that other adhesion pathways may be involved in mediating the action of TGFβ1 in this cell line. J. Cell. Physiol. 178:296–303, 1999. © 1999 Wiley-Liss, Inc.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号