首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Rise of intracellular Ca2+ level causes the decrease of cyclin B1 and Mos in the newt eggs at fertilization
Authors:Satoshi Yamamoto  Masakane Yamashita  Yasuhiro Iwao
Abstract:Unfertilized eggs of the newt, Cynops pyrrhogaster, are arrested at the second meiotic metaphase, with activity of the M‐phase promoting factor (MPF) maintained at a high level. After fertilization, the eggs resume the cell cycle, and emit the second polar body. When the change in Ca2+]i in the fertilized eggs was monitored by aequorin, an early increase in Ca2+]i was observed 5–10 min after insemination and continued for about 30 sec. A late increase in Ca2+]i then occurred 10–15 min after fertilization and continued for 30–40 min. The injection of 1,2‐Bis (2 aminophenoxy) ethane‐N,N,N′,N′,‐tetraacetic acid (BAPTA) into unfertilized eggs inhibited reinitiation of the cell cycle after fertilization. Western blot analysis with antibodies against cyclin B1 or Mos indicated that both cyclin B1 and Mos were present in unfertilized eggs, but both disappeared within 30 min after fertilization. Treatment with Ca2+‐ionophore decreased both cyclin B1 and Mos. Chymotryptic activity in Cynops egg extracts was not significantly increased after fertilization or activation by treatment with the Ca2+‐ionophore. No change in Ca2+]i was observed following treatment with cycloheximide, but the amount of both cyclin B1 and Mos rapidly decreased. These results indicate that resumption of meiosis in Cynops eggs is induced by an increase in Ca2+]i at fertilization, which causes degradation of both cyclin B1 and Mos by inhibition of de novo synthesis of those proteins. Mol. Reprod. Dev. 53:341–349, 1999. © 1999 Wiley‐Liss, Inc.
Keywords:physiological polyspermy  cytostatic factor (CSF)  ubiquitin‐proteasome pathway
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号