首页 | 本学科首页   官方微博 | 高级检索  
     


Medical Device Industry Approaches for Addressing Sources of Failing Cytotoxicity Scores
Authors:Helin Rä  ä  gel,Audrey Turley,Trevor Fish,Jeralyn Franson,Thor Rollins,Sarah Campbell,Matthew R. Jorgensen
Abstract:To ensure patient safety, medical device manufacturers are required by the Food and Drug Administration and other regulatory bodies to perform biocompatibility evaluations on their devices per standards, such as the AAMI-approved ISO 10993-1:2018 (ANSI/AAMI/ISO 10993-1:2018).However, some of these biological tests (e.g., systemic toxicity studies) have long lead times and are costly, which may hinder the release of new medical devices. In recent years, an alternative method using a risk-based approach for evaluating the toxicity (or biocompatibility) profile of chemicals and materials used in medical devices has become more mainstream. This approach is used as a complement to or substitute for traditional testing methods (e.g., systemic toxicity endpoints). Regardless of the approach, the one test still used routinely in initial screening is the cytotoxicity test, which is based on an in vitro cell culture system to evaluate potential biocompatibility effects of the final finished form of a medical device. However, it is known that this sensitive test is not always compatible with specific materials and can lead to failing cytotoxicity scores and an incorrect assumption of potential biological or toxicological adverse effects. This article discusses the common culprits of in vitro cytotoxicity failures, as well as describes the regulatory-approved methodology for cytotoxicity testing and the approach of using toxicological risk assessment to address clinical relevance of cytotoxicity failures for medical devices. Further, discrepancies among test results from in vitro tests, use of published half-maximal inhibitory concentration data, and the derivation of their relationship to tolerable exposure limits, reference doses, or no observed adverse effect levels are highlighted to demonstrate that although cytotoxicity tests in general are regarded as a useful sensitive screening assays, specific medical device materials are not compatible with these cellular/in vitro systems. For these cases, the results should be analyzed using more clinically relevant approaches (e.g., through chemical analysis or written risk assessment).

Medical devices are engineered to be of durable construction and to accommodate the functionality needed for proper device application. The biocompatibility of the materials, as well as their processing, is also important to ensure that the patients are not negatively affected by the devices when they enter the clinical setting. Certain materials of constructions used for medical devices (and manufacturing processes or processing aids) may contain chemicals that can lead to failing cytotoxicity scores using traditional, regulatory-mandated methodologies. Examples of common materials include plastics (e.g., polyethylene or polypropylene [co]polymers, polyvinyl chloride [PVC]) and metals (e.g., nitinol, copper [Cu]-containing alloys). Although providing stable and reliable materials for use in relation to performance parameters, various metals/alloys and plastics may evoke undesired cytotoxic effects. These effects might be observed as reduced cellular activity or decay in the in vitro assay, especially when standard methods and test parameters (e.g., extraction ratios) are used.1,2To prevent adverse effects (e.g., toxicity, or other types of biocompatibility-related issues) from occurring among patients and clinical end users, manufacturers are required to perform biocompatibility evaluations per guidance provided in e.g., ANSI/AAMI/ISO 10993-1:2018.3 This standard provides an overall framework for the biological evaluation, emphasizing a risk-based approach, as well as general guidance on relevant tests for specific types of contact to patients or users. Of note, traditional biocompatibility tests, within the battery of both in vivo and in vitro methods, could take up to 6 months (or take years, in the case of long-term systemic toxicity testing). Lengthy turnaround times stem from in vivo test methods, which are performed on animal models and include irritation, sensitization, systemic toxicity, genotoxicity, and carcinogenicity studies. Traditional in vitro tests involve exposure of cells or cellular material to device extracts in order to characterize toxicity in terms of cytotoxicity, genotoxicity, cellular metabolic activity, and aspects of hemocompatibility.3In recent years, as a complement to or a substitute for traditional testing methods, a risk-based approach using a chemical and materials characterization for evaluation of patient safety has become mainstream. The framework for this approach is provided in ISO 10993-18:2020.4 Moreover, the Association for the Advancement of Medical Instrumentation (AAMI) and, by extension, regulatory bodies (including the Food and Drug Administration [FDA] and International Organization for Standardization [ISO]) have driven the use of chemical and material characterization. Particularly for medical devices in long-term contact with patient (e.g., implantable devices), use of chemical and material characterization can reduce unnecessary animal testing and provide results that are scientifically sound and detailed, while being more cost and time efficient. For example, ISO 10993-13 highlights that a correctly conducted risk assessment can provide justification to exclude long-term biological testing, where the nature and extent of exposure confirms that the patient is being exposed to very low levels of chemicals that are below relevant toxicological thresholds.3Throughout the ISO 10993 series, it also is emphasized that conducting animal testing for biological risk evaluation should only be considered after all alternative courses of action (review of prior knowledge, chemical or physical characterization, in vitro evaluations, or alternative means of mitigation) have been exhausted. In addition, analytical chemistry used for chemical characterization can be used as a means for investigating possible culprits when traditional biocompatibility tests, such as cytotoxicity tests, fail, especially in cases where a known substance(s) in the material has cytotoxic potential (e.g., silver-infused wound dressing that provides antibacterial properties).However, it should be kept in mind that although chemistry can be a powerful tool in many cases, not all medical devices extracts are compatible with the analytical methods and instruments used, and these studies may not provide the full understanding of the toxicity profile of the device. In those cases, animal testing or further justification may still be needed to demonstrate a safe biocompatibility profile for the device.Cytotoxicity testing per AAMI/ISO 10993-5:2009/(R)20145 has historically been one of the most used (and is considered the most reactive) of the biocompatibility tests6,7 and can be efficiently used to detect abnormal effects to cells that may arise if harmful chemicals are present in device extracts. However, it also is recognized that cell-based test methods do not necessarily correlate to in vivo toxicological effects and actual clinical patient safety, often showing a reaction when no clinical adverse effects are known or expected to occur. For instance, some soluble metal ions (e.g., Cu, nickel [Ni]) are known to exert toxic effects on cells in an in vitro setting; however, their presence in surgical instruments and implants has demonstrated high patient tolerance and negligible effects upon clinical use.This article provides a brief evaluation of the clinical impact of metals and plasticizers commonly used in medical device materials that may lead to patient exposure during the use of devices, with emphasis given to those that may result in cytotoxicity failures in an in vitro setting. In addition, an approach to evaluating valid clinical risks using a toxicological risk assessment is discussed.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号