首页 | 本学科首页   官方微博 | 高级检索  
     


Phosphorus addition reduces invasion of a longleaf pine savanna (Southeastern USA) by a non-indigenous grass (Imperata cylindrica)
Authors:Brewer  J. Stephen  Cralle   Sean P.
Affiliation:(1) Department of Biology, University of Mississippi, Mississippi, 38677–1848, USA
Abstract:Imperata cylindrica is an invasive C4 grass, native to Asia and increasing in frequency throughout the tropics, subtropics, and southeastern USA. Such increases are associated with reduced biodiversity, altered fire regimes, and a more intense competitive environment for commercially important species. We measured rates of clonal spread by I. cylindrica from a roadside edge into the interior of two longleaf pine savannas. In addition, we measured the effects of fertilization with nitrogen and phosphorus on clonal invasion of one of these sites. Clonal invasion occurred at both sites and at similar rates. Older portions of an I. cylindrica sward contained fewer species of native pine-savanna plants. Clonal growth rates and aboveground mass of I. cylindrica were reduced by the addition of phosphorus relative to controls by the second growing season at one site. As a group, native species were not affected much by P-addition, although the height of legumes was increased by P addition, and the percent cover of legumes relative to native non-legumes decreased with increasing expected P limitation (i.e., going from P-fertilized to controls to N-fertilized treatments). Clonal invasion was negatively correlated with the relative abundance of legumes in control plots but not in P-fertilized plots. Species richness and percent cover of native plants (both legumes and non-legumes) were dramatically lower in N-fertilized plots than in controls or P-fertilized plots. Species richness of native plants was negatively correlated with final aboveground mass of I. cylindrica in control and P-fertilized plots, but not in N-fertilized plots. The results suggest that I. cylindrica is a better competitor for phosphorus than are native pine-savanna plants, especially legumes, and that short-lived, high-level pulses of phosphorus addition reduce this competitive advantage without negatively affecting native plant diversity. Ratios of soil P to N or native legume to non-legume plant species may provide indicators of the resistance of pristine pine savannas to clonal invasion by I. cylindrica.
Keywords:Clonal growth  Competition  Fertilizer  Invasiveness  Nitrogen  Nutrient limitation  Phosphorus
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号