首页 | 本学科首页   官方微博 | 高级检索  
     


Protein-tyrosine phosphatase (PTP) wedge domain peptides: a novel approach for inhibition of PTP function and augmentation of protein-tyrosine kinase function
Authors:Xie Youmei  Massa Stephen M  Ensslen-Craig Sonya E  Major Denice L  Yang Tao  Tisi Michelle A  Derevyanny Vicki D  Runge William O  Mehta Brijesh P  Moore Laura A  Brady-Kalnay Susann M  Longo Frank M
Affiliation:Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA.
Abstract:Inhibition of protein-tyrosine phosphatases (PTPs) counterbalancing protein-tyrosine kinases (PTKs) offers a strategy for augmenting PTK actions. Conservation of PTP catalytic sites limits development of specific PTP inhibitors. A number of receptor PTPs, including the leukocyte common antigen-related (LAR) receptor and PTPmu, contain a wedge-shaped helix-loop-helix located near the first catalytic domain. Helix-loop-helix domains in other proteins demonstrate homophilic binding and inhibit function; therefore, we tested the hypothesis that LAR wedge domain peptides would exhibit homophilic binding, bind to LAR, and inhibit LAR function. Fluorescent beads coated with LAR or PTPmu wedge peptides demonstrated PTP-specific homophilic binding, and LAR wedge peptide-coated beads precipitated LAR protein. Administration of LAR wedge Tat peptide to PC12 cells resulted in increased proliferation, decreased cell death, increased neurite outgrowth, and augmented Trk PTK-mediated responses to nerve growth factor (NGF), a phenotype matching that found in PC12 cells with reduced LAR levels. PTPmu wedge Tat peptide had no effect on PC12 cells but blocked the PTPmu-dependent phenotype of neurite outgrowth of retinal ganglion neurons on a PTPmu substrate, whereas LAR wedge peptide had no effect. The survival- and neurite-promoting effect of the LAR wedge peptide was blocked by the Trk inhibitor K252a, and reciprocal co-immunoprecipitation demonstrated LAR/TrkA association. The addition of LAR wedge peptide inhibited LAR co-immunoprecipitation with TrkA, augmented NGF-induced activation of TrkA, ERK, and AKT, and in the absence of exogenous NGF, induced activation of TrkA, ERK, and AKT. PTP wedge domain peptides provide a unique PTP inhibition strategy and offer a novel approach for augmenting PTK function.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号