首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Reconstitution and Engineering of Apoptotic Protein Interactions on the Bacterial Cell Surface
Authors:Jingjing Sun  Nicole Clarke  Christodoulos A Floudas
Institution:1 Department of Chemical Engineering, Princeton University, Princeton, NJ 08544, USA
2 Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
Abstract:The interactions between pro- and anti-apoptotic members of the Bcl-2 class of proteins control whether a cell lives or dies, and the study of these protein-protein interactions has been an area of intense research. In this report, we describe a new tool for the study and engineering of apoptotic protein interactions that is based on the flow cytometric detection of these interactions on the surface of Escherichia coli. After validation of the assay with the well-studied interaction between the Bak(72-87) peptide and the anti-apoptotic protein Bcl-xL, the effect of both increasing and decreasing Bak peptide length on Bcl-xL binding was investigated. Previous work demonstrated that the Bak(72-87) peptide also binds to the anti-apoptotic protein Bcl-2, albeit with lower binding affinity compared to Bcl-xL. Here, we demonstrate that a slightly longer Bak peptide corresponding to amino acids 72-89 of Bak binds Bcl-xL and Bcl-2 equally well. Approximate binding affinity calculations on these peptide-protein complexes confirm the experimental observations. The flow cytometric assay was also used to screen a saturation mutagenesis library of Bak(72-87) variants for improved affinity to Bcl-xL. The best variants obtained from this library exhibit an apparent Kd to Bcl-xL 4-fold lower than that of wild-type Bak(72-87).
Keywords:eCPX  enhanced circularly permuted OmpX  SAPE  streptavidin-phycoerythrin  SPR  surface plasmon resonance  OMP  outer-membrane preparation  PBS  phosphate-buffered saline  PDB  Protein Data Bank
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号