Thermodynamics of GTP and GDP Binding to Bacterial Initiation Factor 2 Suggests Two Types of Structural Transitions |
| |
Authors: | Vasili Hauryliuk Vladimir A. Mitkevich Albena Draycheva Stoyan Tankov Andrey Ermakov Alexander A. Makarov |
| |
Affiliation: | 1 Institute of Technology, University of Tartu, Nooruse Street 1, Room 425, 50411 Tartu, Estonia 2 Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow 119991, Russia 3 Molecular Biology Program, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden |
| |
Abstract: | During initiation of messenger RNA translation in bacteria, the GTPase initiation factor (IF) 2 plays major roles in the assembly of the preinitiation 30S complex and its docking to the 50S ribosomal subunit leading to the 70S initiation complex, ready to form the first peptide bond in a nascent protein. Rapid and accurate initiation of bacterial protein synthesis is driven by conformational changes in IF2, induced by GDP-GTP exchange and GTP hydrolysis. We have used isothermal titration calorimetry and linear extrapolation to characterize the thermodynamics of the binding of GDP and GTP to free IF2 in the temperature interval 4-37 °C. IF2 binds with about 20-fold and 2-fold higher affinity for GDP than for GTP at 4 and 37 °C, respectively. The binding of IF2 to both GTP and GDP is characterized by a large heat capacity change (− 868 ± 25 and − 577 ± 23 cal mol− 1 K− 1, respectively), associated with compensatory changes in binding entropy and enthalpy. From our data, we propose that GTP binding to IF2 leads to protection of hydrophobic amino acid residues from solvent by the locking of switch I and switch II loops to the γ-phosphate of GTP, as in the case of elongation factor G. From the large heat capacity change (also upon GDP binding) not seen in the case of elongation factor G, we propose the existence of yet another type of conformational change in IF2, which is induced by GDP and GTP alike. Also, this transition is likely to protect hydrophobic groups from solvent, and its functional relevance is discussed. |
| |
Keywords: | IF, initiation factor cryo-EM, cryo-electron microscopy SAXS, small-angle X-ray scattering ITC, isothermal titration calorimetry EF-G, elongation factor G |
本文献已被 ScienceDirect 等数据库收录! |
|