首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Endogenous regulation of 2-deoxyglucose uptake in C6 glioma cells correlates with cytoskeleton-mediated changes of surface morphology
Authors:K Lange  U Brandt  K Keller  B Zimmermann
Institution:Institut für Pharmakologie, Freie Universit?t Berlin, Federal Republic of Germany.
Abstract:The cellular basis of the membrane-limited state of glucose utilization and the mechanism of the endogenous regulation of hexose uptake in dense monolayers of C6 glioma cells were investigated. In an earlier study, it was shown that at high rates of glucose transport and phosphorylation combined with the inhibition of glycolytic adenosine triphosphate (ATP) production by iodoacetate, an endogenous regulatory response occurred that resulted in rapid, periodic variations of the glucose uptake rates (Lange et al., 1982). Similar time-dependent periodic changes of uptake rates also occurred during incubation of C6 glioma cells with 2 mM 2-deoxyglucose (2-DG) without pretreatment of the cells with iodoacetate. These changes were accompanied by variations of the intracellular ATP content, by distinct alterations of the shape and arrangement of microvilli and lamellae (lamellipodia) on the cell surface, and by changes of the cytoskeletal F-actin content. Because the changes of 2-DG uptake rates occurred independent of the intracellular 2-DG concentration, the bulk of this 2-DG pool was assumed to be localized apart from the membranal transport sites. Downregulation of 2-DG uptake appeared to be triggered by a rapid decrease of a small pool of the cellular ATP involved in the phosphorylation of transported hexose. Scanning and transmission electron microscopic observations of cells fixed in different states of the endogenous uptake regulation supported the assumption that the interior of lamellae and microvilli may represent a small entrance compartment for transported hexoses in which occurred the observed close coupling between hexose transport and phosphorylation as well as the rapid variations of ATP content. Hexose uptake is supposed to be regulated by cytoskeleton-mediated changes of volume and diffusional accessibility of this compartment, modulating the degree of its metabolic coupling with the cytoplasmic main compartment.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号