首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Analyses of the interaction between the origin binding domain from simian virus 40 T antigen and single-stranded DNA provide insights into DNA unwinding and initiation of DNA replication
Authors:Reese Danielle K  Meinke Gretchen  Kumar Anuradha  Moine Stephanie  Chen Kathleen  Sudmeier James L  Bachovchin William  Bohm Andrew  Bullock Peter A
Institution:Department of Biochemistry A703, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA.
Abstract:DNA helicases are essential for DNA metabolism; however, at the molecular level little is known about how they assemble or function. Therefore, as a model for a eukaryotic helicase, we are analyzing T antigen (T-ag) the helicase encoded by simian virus 40. In this study, nuclear magnetic resonance (NMR) methods were used to investigate the transit of single-stranded DNA (ssDNA) through the T-ag origin-binding domain (T-ag OBD). When the residues that interact with ssDNA are viewed in terms of the structure of a hexamer of the T-ag OBD, comprised of residues 131 to 260, they indicate that ssDNA passes over one face of the T-ag OBD and then transits through a gap in the open ring structure. The NMR-based conclusions are supported by an analysis of previously described mutations that disrupt critical steps during the initiation of DNA replication. These and related observations are discussed in terms of the threading of DNA through T-ag hexamers and the initiation of viral DNA replication.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号