首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Specificity of acceptor binding to Leuconostoc mesenteroides B-512F dextransucrase: binding and acceptor-product structure of alpha-methyl-D-glucopyranoside analogs modified at C-2, C-3, and C-4 by inversion of the hydroxyl and by replacement of the hydroxyl with hydrogen
Authors:D T Fu  M E Slodki  J F Robyt
Institution:Department of Biochemistry and Biophysics, Iowa State University, Ames 50011.
Abstract:The specificity of acceptor binding to the active site of dextransucrase was studied by using alpha-methyl-D-glucopyranoside analogs modified at C-2, C-3, and C-4 positions by (a) inversion of the hydroxyl group and (b) replacement of the hydroxyl group with hydrogen. 2-Deoxy-alpha-methyl-D-glucopyranoside was synthesized from 2-deoxyglucose; 3- and 4-deoxy-alpha-methyl-D-glucopyranosides were synthesized from alpha-methyl-D-glucopyranoside; and alpha-methyl-D-allopyranoside was synthesized from D-glucose. The analogs were incubated with 14C]sucrose and dextransucrase, and the products were separated by thin-layer chromatography and quantitated by liquid scintillation spectrometry. Structures of the acceptor products were determined by methylation analyses and optical rotation. The relative effectiveness of the acceptor analogs in decreasing order were 2-deoxy, 2-inverted, 3-deoxy, 3-inverted, 4-inverted, and 4-deoxy. The enzyme transfers D-glucopyranose to the C-6 hydroxyl of analogs modified at C-2 and C-3, to the C-4 hydroxyl of 4-inverted, and to the C-3 hydroxyl of 4-deoxy analogs of alpha-methyl-D-glucopyranoside. The data indicate that the hydroxyl group at C-2 is not as important for acceptor binding as the hydroxyl groups at C-3 and C-4. The hydroxyl group at C-4 is particularly important as it determines the binding orientation of the alpha-methyl-D-glucopyranoside ring.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号