首页 | 本学科首页   官方微博 | 高级检索  
     


Cytosolic pH regulates GCl through control of phosphorylation states of CFTR
Authors:Reddy, M. M.   Kopito, Ron R.   Quinton, P. M.
Abstract:Our objective inthis study was to determine the effect of changes in luminal andcytoplasmic pH on cystic fibrosis transmembrane regulator (CFTR)Cl- conductance(GCl). Wemonitored CFTRGCl in the apicalmembranes of sweat ducts as reflected byCl- diffusion potentials(VCl) andtransepithelial conductance(GCl). We foundthat luminal pH (5.0-8.5) had little effect on thecAMP/ATP-activated CFTRGCl, showing thatCFTR GCl ismaintained over a broad range of extracellular pH in which it functionsphysiologically. However, we found that phosphorylation activation ofCFTR GCl issensitive to intracellular pH. That is, in the presence of cAMP and ATP [adenosine5'-O-(3-thiotriphosphate)],CFTR could be phosphorylated at physiological pH (6.8) but not at lowpH (~5.5). On the other hand, basic pH prevented endogenousphosphatase(s) from dephosphorylating CFTR.After phosphorylationof CFTR with cAMP and ATP, CFTRGCl is normallydeactivated within 1 min after cAMP is removed, even in the presence of5 mM ATP. This deactivation was due to an increase in endogenousphosphatase activity relative to kinase activity, since it was reversedby the reapplication of ATP and cAMP. However, increasing cytoplasmicpH significantly delayed the deactivation of CFTRGCl in adose-dependent manner, indicating inhibition of dephosphorylation. Weconclude that CFTRGCl may beregulated via shifts in cytoplasmic pH that mediate reciprocal controlof endogenous kinase and phosphatase activities. Luminal pH probably has little direct effect on these mechanisms. This regulation of CFTRmay be important in shifting electrolyte transport in the duct fromconductive to nonconductive modes.

Keywords:
点击此处可从《American journal of physiology. Cell physiology》浏览原始摘要信息
点击此处可从《American journal of physiology. Cell physiology》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号