首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The molecular deposition of transgenically modified starch in the starch granule as imaged by functional microscopy
Authors:Blennow Andreas  Hansen Michael  Schulz Alexander  Jørgensen Kirsten  Donald Athene M  Sanderson James
Institution:Center for Molecular Plant Physiology, Plant Biochemistry Laboratory, Department of Plant Biology, The Royal Veterinary and Agricultural University, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark. abl@kvl.dk
Abstract:The molecular deposition of starch extracted from normal plants and transgenically modified potato lines was investigated using a combination of light microscopy, environmental scanning electron microscopy (ESEM) and confocal laser scanning microscopy (CLSM). ESEM permitted the detailed (10 nm) topographical analysis of starch granules in their hydrated state. CLSM could reveal internal molar deposition patterns of starch molecules. This was achieved by equimolar labelling of each starch molecule using the aminofluorophore 8-amino-1,3,6-pyrenetrisulfonic acid (APTS). Starch extracted from tubers with low amylose contents (suppressed granule bound starch synthase, GBSS) showed very little APTS fluorescence and starch granules with low molecular weight amylopectin and/or high amylose contents showed high fluorescence. Growth ring structures were sharper in granules with normal or high amylose contents. High amylose granules showed a relatively even distribution in fluorescence while normal and low amylose granules had an intense fluorescence in the hilum indicating a high concentration of amylose in the centre of the granule. Antisense of the starch phosphorylating enzyme (GWD) resulted in low molecular weight amylopectin and small fissures in the granules. Starch granules with suppressed starch branching enzyme (SBE) had severe cracks and rough surfaces. Relationships between starch molecular structure, nano-scale crystalline arrangements and topographical-morphological features were estimated and discussed.
Keywords:Solanum tuberosum  Antisense suppression  Starch granule  Amylose  Amylopectin  Confocal laser scanning microscopy  Environmental scanning electron microscopy
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号