首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ubiquitous and tenacious methylation of the CpG site in codon 248 of the p53 gene may explain its frequent appearance as a mutational hot spot in human cancer.
Authors:A N Magewu and  P A Jones
Institution:Department of Biochemistry and Molecular Biology, Kenneth Norris Jr. Comprehensive Cancer Center, University of Southern California School of Medicine, Los Angeles 90033.
Abstract:Cytosine methylation at CpG dinucleotides is thought to cause more than one-third of all transition mutations responsible for human genetic diseases and cancer. We investigated the methylation status of the CpG dinucleotide at codon 248 in exon 7 of the p53 gene because this codon is a hot spot for inactivating mutations in the germ line and in most human somatic tissues examined. Codon 248 is contained within an HpaII site (CCGG), and the methylation status of this and flanking CpG sites was analyzed by using the methylation-sensitive enzymes CfoI (GCGC) and HpaII. Codon 248 and the CfoI and HpaII sites in the flanking introns were methylated in every tissue and cell line examined, indicating extensive methylation of this region in the p53 gene. Exhaustive treatment of an osteogenic sarcoma cell line, TE85, with the hypomethylating drug 5-aza-2'-deoxycytidine did not demethylate codon 248 or the CfoI sites in intron 6, although considerable global demethylation of the p53 gene was induced. Constructs containing either exon 7 alone or exon 7 and the flanking introns were transfected into TE85 cells to determine whether de novo methylation would occur. The presence of exon 7 alone caused some de novo methylation to occur at codon 248. More extensive de novo methylation of the CfoI sites in intron 6, which contains an Alu sequence, occurred in cells transfected with a vector containing exon 7 and flanking introns. With longer time in culture, there was increased methylation at the CfoI sites, and de novo methylation of codon 248 and its flanking HpaII sites was observed. These de novo-methylated sites were also resistant to 5-aza-2'-deoxycytidine-induced demethylation. The frequent methylation of codon 248 and adjacent Alu sequence may explain the enhanced mutability of this site as a result of the deamination of the 5-methylcytosine.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号