Three-dimensional structure of fatty-acid-binding protein from bovine heart |
| |
Authors: | A Müller-Fahrnow U Egner T A Jones H Rüdel F Spener W Saenger |
| |
Affiliation: | Institut für Kristallographie, Freie Universit?t Berlin, Federal Republic of Germany. |
| |
Abstract: | The complex of fatty-acid-binding protein (FABP) from bovine heart (cFABP, pI4.9) with endogenous lipid was crystallized in the presence of ammonium sulfate as precipitant. The needle-shaped crystals belong to the monoclinic space group C2, with unit-cell constants a = 5.262(6) nm, b = 7.631(8) nm, c = 3.945(5) nm and beta = 94.47(9) degrees. A native data set to 0.35 nm resolution was collected using synchrotron radiation and film methods. An initial model for the three-dimensional structure of the protein was constructed based on the crystal structure of the related bovine P2 myelin protein [Jones, T.A., Bergfors, T., Sedzik, J. & Unge, T. (1988) EMBO J. 7, 1597-1604] to which the amino acid sequence of bovine cFABP was adapted. Energy minimizations were carried out under different conditions using both an all-atom and a united-atom force field. The optimized models were used to determine the crystal structure of cFABP by molecular-replacement techniques. The structure was refined by simulated annealing to R = 0.267. As the bound lipid is heterogeneous, it could not be located in the electron-density map and/or the attained resolution was not sufficient. Bovine cFABP is composed of ten antiparallel beta strands forming a beta barrel, and by two alpha helices. The structural features are similar to those of other members of the superfamily of hydrophobic molecule transporters. |
| |
Keywords: | |
|
|