Acidic cytochrome c6 of unicellular cyanobacteria is an indispensable and kinetically competent electron donor to cytochrome oxidase in plasma and thylakoid membranes. |
| |
Authors: | D Moser P Nicholls M Wastyn G Peschek |
| |
Affiliation: | Institute of Physical Chemistry, University of Vienna, Austria. |
| |
Abstract: | Cytochromes c6 from three cyanobacteria were tested as substrates for membranous cyt. c oxidase(aa3) of Anacystis and Synechocystis using intact spheroplasts or isolated plasma(CM) and thylakoid(ICM) membranes. Neither spheroplasts nor CM/ICM gave significant O2 uptake rates with NADH without added cyt. c. Horse cyt. c (at low ionic strength) or cyt. c6 from Anacystis, Synechocystis or Microcystis (at high ionic strength) supported substantial HCN- & CO-sensitive NADH oxidase activity, consistent with in vivo O2 uptake. Cyanobacterial respiratory electron transport involves NADH dehydrogenase(fpN), plastoquinone, cyt. b/c(f), cyt. c6 & cyt. aa3, in both CM & ICM. In ICM, fpN and cyt. aa3 are functionally replaced in the light by PS II and PS I, respectively. In both membranes, cyt. c6 is an obligatory electron donor to cyt. aa3 &/or to P700. Respiratory action of acidic cyt. c6 (in unicellular species) may be unmasked only under conditions of elevated ionic strength. |
| |
Keywords: | |
|
|