首页 | 本学科首页   官方微博 | 高级检索  
     


Actin-induced closure of the actin-binding cleft of smooth muscle myosin
Authors:Yengo Christopher M  De La Cruz Enrique M  Chrin Lynn R  Gaffney Donald P  Berger Christopher L
Affiliation:Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont, Burlington, Vermont 05405-0075, USA.
Abstract:The putative actin-binding interface of myosin is separated by a large cleft that extends into the base of the nucleotide binding pocket, suggesting that it may be important for mediating the nucleotide-dependent changes in the affinity for myosin on actin. We have genetically engineered a truncated version of smooth muscle myosin containing the motor domain and the essential light chain-binding region (MDE), with a single tryptophan residue at position 425 (F425W-MDE) in the actin-binding cleft. Steady-state fluorescence of F425W-MDE demonstrates that Trp-425 is in a more solvent-exposed conformation in the presence of MgATP than in the presence of MgADP or absence of nucleotide, consistent with closure of the actin-binding cleft in the strongly bound states of MgATPase cycle for myosin. Transient kinetic experiments demonstrate a direct correlation between the rates of strong actin binding and the conformation of Trp-425 in the actin-binding cleft, and suggest the existence of a novel conformation of myosin not previously seen in solution or by x-ray crystallography. Thus, these results directly demonstrate that: 1) the conformation of the actin-binding cleft mediates the affinity of myosin for actin in a nucleotide-dependent manner, and 2) actin induces conformational changes in myosin required to generate force and motion during muscle contraction.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号