首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Enhancing RGI lyase thermostability by targeted single point mutations
Authors:Inês R Silva  Dorte M Larsen  Carsten Jers  Patrick Derkx  Anne S Meyer  Jørn D Mikkelsen
Institution:1. Center for Bioprocess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, 2800, Kongens Lyngby, Denmark
2. Chr. Hansen A/S, B?ge Allé 10-12, 2970, H?rsholm, Denmark
Abstract:Rhamnogalacturonan I lyase (RGI lyase) (EC 4.2.2.-) catalyzes the cleavage of rhamnogalacturonan I in pectins by β-elimination. In this study the thermal stability of a RGI lyase (PL 11) originating from Bacillus licheniformis DSM 13/ATCC14580 was increased by a targeted protein engineering approach involving single amino acid substitution. Nine individual amino acids were selected as targets for site-saturated mutagenesis by the use of a predictive consensus approach in combination with prediction of protein mutant stability changes and B-factor iteration testing. After extensive experimental verification of the thermal stability of the designed mutants versus the original wild-type RGI lyase, several promising single point mutations were obtained, particularly in position Glu434 on the surface of the enzyme protein. The best mutant, Glu434Leu, produced a half-life of 31 min at 60 °C, corresponding to a 1.6-fold improvement of the thermal stability compared to the original RGI lyase. Gly55Val was the second best mutation with a thermostability half-life increase of 27 min at 60 °C, and the best mutations following were Glu434Trp, Glu434Phe, and Glu434Tyr, respectively. The data verify the applicability of a combinatorial predictive approach for designing a small site saturation library for improving enzyme thermostability. In addition, new thermostable RGI lyases suitable for enzymatic upgrading of pectinaceous plant biomass materials at elevated temperatures were produced.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号