首页 | 本学科首页   官方微博 | 高级检索  
     


Two Kinetic Patterns of Epitope-Specific CD8 T-Cell Responses following Murine Gammaherpesvirus 68 Infection
Authors:Michael L. Freeman  Kathleen G. Lanzer  Tres Cookenham  Bjoern Peters  John Sidney  Ting-Ting Wu  Ren Sun  David L. Woodland  Alessandro Sette  Marcia A. Blackman
Affiliation:Trudeau Institute, Saranac Lake, New York 12983,1. La Jolla Institute of Allergy and Immunology, La Jolla, California 92037,2. University of California at Los Angeles, Los Angeles, California 900953.
Abstract:Murine gammaherpesvirus 68 (γHV68) provides an important experimental model for understanding mechanisms of immune control of the latent human gammaherpesviruses. Antiviral CD8 T cells play a key role throughout three separate phases of the infection: clearance of lytic virus, control of the latency amplification stage, and prevention of reactivation of latently infected cells. Previous analyses have shown that T-cell responses to two well-characterized epitopes derived from ORF6 and ORF61 progress with distinct kinetics. ORF6487-specific cells predominate early in infection and then decline rapidly, whereas ORF61524-specific cells continue to expand through early latency, due to sustained epitope expression. However, the paucity of identified epitopes to this virus has limited our understanding of the overall complexities of CD8 T-cell immune control throughout infection. Here we screened 1,383 predicted H-2b-restricted peptides and identified 33 responses, of which 21 have not previously been reported. Kinetic analysis revealed a spectrum of T-cell responses based on the rapidity of their decline after the peak acute response that generally corresponded to the expression patterns of the two previously characterized epitopes. The slowly declining responses that were maintained during latency amplification proliferated more rapidly and underwent maturation of functional avidity over time. Furthermore, the kinetics of decline was accelerated following infection with a latency-null mutant virus. Overall, the data show that γHV68 infection elicits a highly heterogeneous CD8 T-cell response that segregates into two distinctive kinetic patterns controlled by differential epitope expression during the lytic and latency amplification stages of infection.Murine gammaherpesvirus 68 (γHV68) is a mouse pathogen closely related to the human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi''s sarcoma-associated herpesvirus (KSHV). Intranasal infection of mice with γHV68 leads to an acute infection in lung epithelial cells that is ultimately cleared and the concurrent establishment of latency in B cells, dendritic cells, and macrophages that undergoes amplification in the spleen and is maintained lifelong (11, 12). Even though γHV68 has the capacity to downregulate major histocompatibility complex class I (MHC-I) molecules (36), CD8 T cells specific for γHV68 are generated and have been shown to proliferate in response to cognate antigen, protect naive mice from γHV68 infection, lyse peptide-pulsed target cells in vivo and in vitro, and maintain the ability to produce antiviral cytokines (5, 6, 13, 27, 35). Until recently, knowledge of the antiviral CD8 T-cell repertoire in C57BL/6 mice was largely limited to two well-characterized epitopes derived from ORF6 and ORF61. T-cell responses to these epitopes have been shown to progress with distinct kinetics, with ORF6487-specific cells predominating early in infection and ORF61524-specific cells continuing to expand through early latency before declining and then persisting at higher levels late in infection (33). The difference in response kinetics correlates with the differential presentation of the epitopes, with the ORF6487 epitope being expressed only during lytic infection and the ORF61524 epitope being expressed both during lytic infection and during the latency amplification phase (22, 28). Additionally, the latency amplification phase is associated with the expansion of CD8 T cells with a Vβ4 T-cell receptor (TCR) component in several mouse strains (17), presumably due to a superantigen-like effect of the γHV68 M1 protein (4, 9).To better understand the breadth of the anti-γHV68 T-cell response, we used an enzyme-linked immunospot (ELISpot) approach to identify new epitopes. We identified a large number of epitopes derived from 26 proteins that drive the acute CD8 T-cell response to γHV68, which then narrowed over time, resulting in a limited antiviral response during latency. We did not observe inflation of any of the responses, as has been demonstrated for some murine cytomegalovirus (MCMV)-specific responses (20, 26). There was no evidence for functional exhaustion, as all detectable CD8 T-cell responses maintained functionality, but the responses declined in numbers over time. The decline in responses occurred over a broad kinetic range, which segregated into two general groups that correlated precisely with those previously described for ORF6 and ORF61. Thus, some responses declined rapidly after the acute phase of infection, while others declined more slowly.We examined two epitope-specific responses from each of the two patterns in detail over time for functional and phenotypic characteristics and found the responses to be highly heterogeneous, differing in TCR affinity, functional avidity, and proliferation rates. Importantly, slowly declining responses were not maintained as efficiently after infection with a latency-deficient virus, consistent with a role for epitope expression in driving the heterogeneous rate of decline in cell number after the acute infection. The data show that the response kinetics seen for the ORF6487 and ORF61524 responses are broadly applicable to multiple CD8 T-cell epitopes.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号