首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A novel fluorescence-based cellular permeability assay
Authors:Chandra Ankur  Barillas Samuel  Suliman Ahmed  Angle Niren
Institution:Section of Vascular and Endovascular Surgery, Department of Surgery, Univeristy of California, San Diego Medical Center, 200 West Arbor Drive, San Diego, CA 92103-8402, USA.
Abstract:Vascular permeability is a pathologic process in many disease states ranging from metastatic progression of malignancies to ischemia-reperfusion injury. In order to more precisely study tissue, and more specifically cell layer permeability, our goal was to create a fluorescence-based assay which could quantify permeability without radioactivity or electrical impedance measurements. Human aortic endothelial cells were grown in monolayer culture on Costar-Transwell clear polyester membrane 6-well cell culture inserts. After monolayer integrity was confirmed, vascular endothelial growth factor (VEGF(165)) at varying concentrations with a fixed concentration of yellow-green fluorescent 0.04 microm carboxylate-modified FluoSpheres microspheres were placed in the luminal chamber and incubated for 24 h. When stimulated with VEGF(165) at 20, 40, 80, and 100 ng/ml, this assay system was able to detect increases in trans-layer flux of 8.2+/-2.4%, 16.0+/-3.7%, 41.5+/-4.9%, and 58.6+/-10.1% for each concentration, respectively. This represents the first fluorescence-based permeability assay with the sensitivity to detect changes in the permeability of a cell layer to fluid flux independent of protein flux; as well as being simpler and safer than previous radioactive-and impedance-based permeability assays. With the application of this in vitro assay to a variety of pathologic conditions, both the dynamics and physiology relating to cellular permeability can be more fully investigated.
Keywords:Cell permeability  Fluorescence  VEGF  Endothelial cell
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号