首页 | 本学科首页   官方微博 | 高级检索  
   检索      

兼性厌氧复合菌群H纤维素降解和产乙醇能力及生态组成初探
引用本文:杜然,李十中,章晓庆,王莉.兼性厌氧复合菌群H纤维素降解和产乙醇能力及生态组成初探[J].生物工程学报,2010,26(7):960-965.
作者姓名:杜然  李十中  章晓庆  王莉
作者单位:清华大学核能与新能源技术研究院,北京,100084
基金项目:“十一五”国家科技支撑计划 (No. 2006BAD07A01) 资助。
摘    要:通过限制性培养条件和连续继代培养,筛选获得了一组具有高效稳定降解纤维素能力的复合菌群H。该菌群在传代30代以上仍能保持各项性状稳定,其工作pH为6~9,3 d可以完全降解置于100 mL PCS缓冲液培养基中的滤纸,发酵液中能够检出1.54 g/L乙醇。通过16S rDNA扩增和DGGE的方法,对菌群在不同阶段的微生物组成进行了研究,确定了琥珀酸嗜热梭菌Clostridium thermo succinogene、产气荚膜梭菌Clostridium straminisolvens和紫色板蓝根梭菌Clostridium isatidis等多种可直接实现纤维素到乙醇转化的菌株。菌群通过菌种之间的协同作用,共同维持了体系的稳定及降解能力的稳定。明确菌系的组成,对于进一步研究菌群降解机理、优化菌群和提高乙醇产率意义重大。

关 键 词:纤维素降解,微生物菌群,乙醇生产
收稿时间:2010/5/24 0:00:00

Cellulose hydrolysis and ethanol production by a facultative anaerobe bacteria consortium H and its identification
Ran Du,Shizhong Li,Xiaoqing Zhang and Li Wang.Cellulose hydrolysis and ethanol production by a facultative anaerobe bacteria consortium H and its identification[J].Chinese Journal of Biotechnology,2010,26(7):960-965.
Authors:Ran Du  Shizhong Li  Xiaoqing Zhang and Li Wang
Institution:Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China;Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China;Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China;Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
Abstract:The recalcitrance of lignocellulosic biomass makes its hydrolysis by cellulases less effective, and the consolidated bioprocessing (CBP) strategy that combines enzyme production, cellulose hydrolysis and fermentation, particularly the synergetic role of different microbes in attacking cellulose component could be a solution. In this article, a facultative anaerobe microbial consortium named H was isolated, which exhibited high stability even after 30 subcultures, with pH ranging from 6 to 9. Within 3 days, 0.5 g filter paper immerged in 100 mL PCS buffer was completely degraded, and 1.54 g/L ethanol was produced, correspondingly. Further analysis on the component of the microbe consortium was carried out though 16S rDNA and DGGE, and Clostridium thermosuccinogene, Clostridium straminisolvens and Clostridium isatidis that can directly convert cellulose to ethanol were identified, indicating that Clostridium spp. played important role in cellulose degradation through the synergistic coordination of different species, and the characterization of the consortium will benefit the analysis of the underlying mechanisms as well as the optimization of the CBP process for more efficient cellulose degradation and ethanol production.
Keywords:cellulose degradation  microbe consortium  ethanol production
本文献已被 CNKI 万方数据 PubMed 等数据库收录!
点击此处可从《生物工程学报》浏览原始摘要信息
点击此处可从《生物工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号