首页 | 本学科首页   官方微博 | 高级检索  
     


Safrole oxide induced human umbilical vein vascular endothelial cell differentiation into neuron-like cells by depressing the reactive oxygen species level at the low concentration
Authors:Su Le  Zhao Jing  Zhao Bao Xiang  Miao Jun Ying  Yin De Ling  Zhang Shang Li
Affiliation:Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China.
Abstract:Previously, we found that 5-25 microg/ml safrole oxide could inhibit apoptosis and dramatically make a morphological change in human umbilical vein vascular endothelial cells (HUVECs). But the possible mechanism by which safrole oxide function is unknown. To answer this question, in this study, we first investigated the effects of it on the activity of nitric oxide synthetase (NOS), the expressions of Fas and integrin beta4, which play important roles in HUVEC growth and apoptosis, respectively. The results showed that, at the low concentration (10 microg/ml), safrole oxide had no effects on NOS activity and the expressions of Fas and integrin beta4. Then, we investigated whether HUVECs underwent differentiation. We examined the expressions of neuron-specific enolase (NSE) and neurofilament-L (NF-L). Furthermore, we analyzed the changes of intracellular reactive oxygen species (ROS). After 10 h of treatment with 10 microg/ml safrole oxide, some HUVECs became neuron-like cells in morphology, and intensively displayed positive NSE and NF-L. Simultaneously, ROS levels dramatically decreased during HUVECs differentiation towards neuron-like cells. At the low concentration, safrole oxide induced HUVECs differentiation into neuron-like cells. Furthermore, our data suggested that safrole oxide might perform this function by depressing intracellular ROS levels instead of by affecting cell growth or apoptosis signal pathways.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号