Dystroglycan is required for polarizing the epithelial cells and the oocyte in Drosophila |
| |
Authors: | Deng Wu-Min Schneider Martina Frock Richard Castillejo-Lopez Casimiro Gaman Emily Anne Baumgartner Stefan Ruohola-Baker Hannele |
| |
Affiliation: | Department of Biochemistry, Box 357350, University of Washington, Seattle, WA 98195, USA. |
| |
Abstract: | The transmembrane protein Dystroglycan is a central element of the dystrophin-associated glycoprotein complex, which is involved in the pathogenesis of many forms of muscular dystrophy. Dystroglycan is a receptor for multiple extracellular matrix (ECM) molecules such as Laminin, agrin and perlecan, and plays a role in linking the ECM to the actin cytoskeleton; however, how these interactions are regulated and their basic cellular functions are poorly understood. Using mosaic analysis and RNAi in the model organism Drosophila melanogaster, we show that Dystroglycan is required cell-autonomously for cellular polarity in two different cell types, the epithelial cells (apicobasal polarity) and the oocyte (anteroposterior polarity). Loss of Dystroglycan function in follicle and disc epithelia results in expansion of apical markers to the basal side of cells and overexpression results in a reduced apical localization of these same markers. In Dystroglycan germline clones early oocyte polarity markers fail to be localized to the posterior, and oocyte cortical F-actin organization is abnormal. Dystroglycan is also required non-cell-autonomously to organize the planar polarity of basal actin in follicle cells, possibly by organizing the Laminin ECM. These data suggest that the primary function of Dystroglycan in oogenesis is to organize cellular polarity; and this study sets the stage for analyzing the Dystroglycan complex by using the power of Drosophila molecular genetics. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|