首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Lipid peroxidation inactivates rat liver microsomal glycerol-3-phosphate acyl transferase. Effect of iron and copper salts and carbon tetrachloride
Authors:P D Thomas  M J Poznansky
Institution:Department of Physiology, University of Alberta, Edmonton, Canada.
Abstract:Lipid peroxidation is known to affect the activity of several enzymes including microsomal enzymes such as glucose-6-phosphatase; but its effect on the enzymes of lipid biosynthesis has not been investigated. Glycerol-3-phosphate acyltransferase (GPAT) represents the first committed step and probably the rate limiting step in glycerolipid synthesis and thus may be a good candidate for study. Rat liver microsomal GPAT was assayed after preincubating the microsomes under conditions known to induce peroxidation. In 30 min, 10 microM Fe2+ can diminish the activity by as much as 80%. The inactivating effect can be blocked to different extents by several antioxidants, while ascorbic acid enhances it. These effects, along with the concomitant measurement of lipid peroxidation, indicate that microsomal GPAT activity is inactivated by lipid peroxidation in a sensitive and rapid fashion. This is further confirmed by the inactivating effect of carbon tetrachloride, which is known to induce lipid peroxidation in microsomes. Fe3+ also inactivates the enzyme, but at a higher concentration. Copper salts inactivate GPAT by a mechanism apparently different from that of iron. The mechanism might involve a direct sulfhydryl modification by copper and lipid peroxidation apparently different from that induced by iron. It is suggested that the inactivation of GPAT by lipid peroxidation could accelerate the process of membrane disintegration caused by lipid peroxidation in pathological conditions involving free radical-mediated tissue injury.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号