首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Pathophysiology and Therapy of Experimental Stroke
Authors:Konstantin-Alexander Hossmann
Institution:(1) Max-Planck-Institute for Neurological Research, Cologne, Germany;(2) Max-Planck-Institute for Neurological Research, Gleueler Strasse 50, D-50931 Cologne, Germany
Abstract:1. Stroke is the neurological evidence of a critical reduction of cerebral blood flow in a circumscribed part of the brain, resulting from the sudden or gradually progressing obstruction of a large brain artery. Treatment of stroke requires the solid understanding of stroke pathophysiology and involves a broad range of hemodynamic and molecular interventions. This review summarizes research that has been carried out in many laboratories over a long period of time, but the main focus will be on own experimental research.2. The first chapter deals with the hemodynamics of focal ischemia with particular emphasis on the collateral circulation of the brain, the regulation of blood flow and the microcirculation. In the second chapter the penumbra concept of ischemia is discussed, providing a detailed list of the physiological, biochemical and structural viability thresholds of ischemia and examples of how these thresholds can be applied for imaging the penumbra. The third chapter summarizes the pathophysiology of infarct progression, focusing on the role of peri-infarct depolarisation, the multitude of putative molecular injury pathways, brain edema and inflammation. Finally, the fourth chapter provides an overview of currently discussed therapeutic approaches, notably the effect of mechanical or thrombolytic reperfusion, arteriogenesis, pharmacological neuroprotection, ischemic preconditioning and regeneration.3. The main emphasis of the review is placed on the balanced differentiation between hemodynamic and molecular factors contributing to the manifestation of ischemic injury in order to provide a rational basis for future therapeutic interventions.
Keywords:focal ischemia  ischemic cell death  hemodynamic mechanisms  molecular mechanisms  collateral circulation  hemodynamic reserve  penumbra  viability thresholds  infarct progression  neuroprotection  thrombolysis  regeneration
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号