首页 | 本学科首页   官方微博 | 高级检索  
   检索      


NMR structure of the N-terminal domain of Saccharomyces cerevisiae RNase HI reveals a fold with a strong resemblance to the N-terminal domain of ribosomal protein L9.
Authors:S P Evans  M Bycroft
Institution:Cambridge Centre for Protein Engineering, Department of Chemistry, Cambridge University, Lensfield Road, Cambridge, CB2 1EW, UK.
Abstract:In addition to the conserved and well-defined RNase H domain, eukaryotic RNases HI possess either one or two copies of a small N-terminal domain. The solution structure of one of the N-terminal domains from Saccharomyces cerevisiae RNase HI, determined using NMR spectroscopy, is presented. The 46 residue motif comprises a three-stranded antiparallel beta-sheet and two short alpha-helices which pack onto opposite faces of the beta-sheet. Conserved residues involved in packing the alpha-helices onto the beta-sheet form the hydrophobic core of the domain. Three highly conserved and solvent exposed residues are implicated in RNA binding, W22, K38 and K39. The beta-beta-alpha-beta-alpha topology of the domain differs from the structures of known RNA binding domains such as the double-stranded RNA binding domain (dsRBD), the hnRNP K homology (KH) domain and the RNP motif. However, structural similarities exist between this domain and the N-terminal domain of ribosomal protein L9 which binds to 23 S ribosomal RNA.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号