首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Phylogenetics and evolution of Capitata (Cnidaria: Hydrozoa), and the systematics of Corynidae
Authors:Annalise M Nawrocki  Peter Schuchert  Paulyn Cartwright
Abstract:Nawrocki, A. M., Schuchert, P. & Cartwright, P. (2009). Phylogenetics and evolution of Capitata (Cnidaria: Hydrozoa), and the systematics of Corynidae.—Zoologica Scripta, 39, 290–304. Generic‐ and family level classifications in Hydrozoa have been historically problematic due to limited morphological characters for phylogenetic analyses and thus taxonomy, as well as disagreement over the relative importance of polyp vs. medusa characters. Within the recently redefined suborder Capitata (Cnidaria: Hydrozoa: Hydroidolina), which includes 15 families and almost 200 valid species, family level relationships based on morphology alone have proven elusive, and there exist numerous conflicting proposals for the relationships of component species. Relationships within the speciose capitate family Corynidae also remain uncertain, for similar reasons. Here, we combine mitochondrial 16S, and nuclear 18S and 28S sequences from capitate hydrozoans representing 12 of the 15 valid capitate families, to examine family level relationships within Capitata. We further sample densely within Corynidae to investigate the validity of several generic‐level classification schemes that rely heavily on the presence/absence of a medusa, a character that has been questioned for its utility in generic‐level classification. We recover largely congruent tree topologies from all three markers, with 28S and the combined dataset providing the most resolution. Our study confirms the monophyly of the redefined Capitata, and provides resolution for family level relationships of most sampled families within the suborder. These analyses reveal Corynidae as paraphyletic and suggest that the limits of the family have been underestimated. Our results contradict all available generic‐level classification schemes for Corynidae. As classification schemes for this family have been largely based on reproductive characters such as the presence/absence of a medusa, our results suggest that these are not valid generic‐level characters for the clade. We suggest a new taxonomic structure for the lineage that includes all members of the newly redefined Corynidae, based on molecular and morphological synapomorphies for recovered clades within the group.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号