首页 | 本学科首页   官方微博 | 高级检索  
     


Bafilomycin A1 Inhibits the Action of Tetanus Toxin in Spinal Cord Neurons in Cell Culture
Authors:Lura C. Williamson   Elaine A. Neale
Affiliation:Laboratory of Developmental Neurobiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, U.S.A.
Abstract:Abstract: Tetanus toxin (TeNT) is one of the clostridial neurotoxins that act intracellularly to block neurotransmitter release. However, neither the route of entry nor the mechanism by which these toxins gain access to the neuronal cytoplasm has been established definitively. In murine spinal cord cell cultures, release of the neurotransmitter glycine is particularly sensitive to blockade by TeNT. To test whether TeNT enters neurons through acidic endosomes or is routed through the Golgi apparatus, toxin action on potassium-evoked glycine release was assayed in cultures pretreated with bafilomycin A1 (baf A1) or brefeldin A (BFA). baf A1, which inhibits the vacuolar-type H+-ATPase responsible for endosome acidification, diminishes the staining of acidic compartments and interferes with the action of TeNT in a dose-dependent manner. TeNT blockade of evoked glycine release is inhibited by 50 and 90% in cultures pretreated with 50 and 100 n M baf A1, respectively, compared with cultures treated with the inhibitor alone. The effects of baf A1 are fully reversible. In contrast, BFA, which disrupts Golgi function, has no effect on TeNT action. These findings provide evidence that TeNT enters the neuronal cytoplasm through baf A1-sensitive acidic compartments and that TeNT is not trafficked through the Golgi apparatus before its translocation into the neuronal cytosol.
Keywords:Bafilomycin A1    Endosomes    Tetanus toxin    Brefeldin A    Acidic compartments    Golgi apparatus
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号